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Abstract—This paper studies the “age of information” (AoI) in
a multi-source status update system where N active sources each
send updates of their time-varying process to a monitor through
a server with packet delivery errors. We analyze the average AoI
for stationary randomized and round-robin scheduling policies.
For both of these scheduling policies, we further analyze the effect
of packet retransmission policies, i.e., retransmission without re-
sampling, retransmission with resampling, or no retransmission,
when errors occur. Expressions for the average AoI are derived
for each case. It is shown that the round-robin schedule policy
in conjunction with retransmission with resampling when errors
occur achieves the lowest average AoI among the considered
cases. For stationary randomized schedules with equiprobable
source selection, it is further shown that the average AoI gap to
round-robin schedules with the same packet management policy
scales as O(N). Finally, for stationary randomized policies, the
optimal source selection probabilities that minimize a weighted
sum average AoI metric are derived.

Index Terms—Age of information, multi-source, active sources,
scheduling, packet transmission errors.

I. INTRODUCTION

Freshness of information is of critical importance in net-

worked monitoring and control systems like intelligent vehicu-

lar systems. The Age of Information metric was first proposed

in [1] to capture the timeliness of received information. In

the simplest setting a source sends updates to a destination

through a channel that is typically modeled as a server with

random service time, e.g., [2]–[6]. The multi-source and/or

multi-destination setting with error-free packet delivery was

considered in [7]–[20].

Several recent papers have considered the effect of packet

delivery errors on AoI [21]–[32]. The single-source single-

destination setting was first studied in [21]. The average AoI

was derived for scheduled access with feedback and slotted

ALOHA-like random access over multiaccess channels in [23].

A single-source multi-destination setting was considered in

[25] where a single base station source sends status updates

to a number of destinations through packets with a fixed

transmission time over unreliable channels. It was shown

that a greedy policy, which schedules a transmission to the

destination with the highest current age is average age optimal

in the absence of error. In [26], [31], the opposite setting was
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Fig. 1. The multi-source status update system with unreliable transmissions.

studied where a network of nodes transmits status updates

to a base station while simultaneously satisfying throughput

constraints. In this setting, stationary randomized policies are

derived to minimize the weighted sum AoI assuming a unit-

delay channel from each source to the destination. A lower

bound was derived on the average peak AoI in multi-hop

networks with time-slotted transmissions and packet loss [32].

This paper considers a multi-source single-destination status

update system where the sources send information packets to a

destination through a server with unreliable transmissions. The

setting considered in this paper is shown in Fig. 1 and is sim-

ilar to the multi-source single-destination setting considered

in [23], [26]. A key difference, however, is that the service

times in our model are assumed to be random according to

the exponential distribution. Another key difference is that we

consider both stationary randomized policies as well as round-

robin policies under three different packet retransmission poli-

cies when errors occur. Table I summarizes the key differences

between the results in this paper compared to [21], [23], [25],

[26]. The main contributions of this paper are twofold: (i)

we derive closed-form expressions for each source’s long-term

average AoI from the perspective of the destination, and (ii) we

derive optimal source selection probabilities that minimize the

weighted sum average AoI for stationary randomized policies.

II. SYSTEM MODEL

We consider a status update system with N sources Si for

i∈I={1,...,N} and one destination node D as shown in Fig. 1.

The sources intend to share information about their local time-

varying state with the destination. We assume that the time

required to sample a status update is negligible and that each

source can generate packets containing status updates “at will”

as in [24], [27]. The packets are sent to the destination through

a server with service time S
i.i.d.∼ Exp(µ). We further assume

that upon service completion, a packet is lost with probability

ǫ. The destination sends instantaneous and error-free feedback

to the server after every service completion indicating whether

the transmission was successful or not. The following sections
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TABLE I
COMPARING THE AVERAGE AOI ANALYSIS IN [21], [23], [25], [26] WITH THIS WORK.

single/multi-

source/destination

status update

arrival rate
at the source(s)

service rate
stationary randomized policy round-robin policy

no
retransmission

retransmission
w/o resampling

retransmission
w/ resampling

no
retransmission

retransmission
w/o resampling

retransmission
w/ resampling

[21]
single-source

single-destination Poisson Exponential —- —- —- —- —- —-

[23]
multi-source

single-destination
at the beginning

of each time slot
constant /

time-slotted —- —- ✓ —- —- ✓

[25]
single-source

multi-destination

at the beginning

of each frame
constant /

time-slotted ✓ —- —- —- ✓ —-

[26]
multi-source

single-destination
at will /

instantaneously
constant /

time-slotted ✓ —- —- —- —- —-

This
work

multi-source
single-destination

at will /
instantaneously Exponential ✓ ✓ ✓ ✓ ✓ ✓

discuss the two scheduling policies considered here: (i) the

stationary randomized policy and (ii) the round-robin policy.

A. Stationary Randomized Schedule Policy

We assume a fixed probability mass function P =
{p1, ..., pN} with pi > 0 corresponding to the probability that

source Si is selected to transmit. We denote the indices of

the transmitted packets over time by j ∈ J = {1, 2, ...} and

mj ∈ I as the source of the j th packet. If the j th packet is

successfully delivered, the next source mj+1 is simply drawn

randomly from P . If the j th packet is lost, then we consider

three packet management approaches:

A1. No Retransmission: The server ignores errors and simply

draws source mj+1 from P as if no error occurred. We

refer to this case as “RND NR”.

A2. Retransmission Without Resampling: The server sets

mj+1 = mj and retransmits the original packet from

Smj
. We refer to this case as “RND ARQ”.

A3. Retransmission With Resampling: The server sets

mj+1 = mj and transmits a fresh packet from Smj
. We

refer to this case as “RND ASQ”.

B. Round-Robin Schedule Policy

For the round-robin scheduling policy, transmitting nodes

are selected deterministically in order. If the j th packet is suc-

cessfully delivered, the next source is mj+1 = {mj mod N}+
1. If the j th packet is lost, then we consider same three packet

management approaches as in the stationary randomized

case. These packet management approaches are denoted as

‘RR NR” (no retransmission, errors are ignored), “RR ARQ”

(the original packet from Smj
is retransmitted until success-

fully delivered), and “RR ASQ” (a fresh packet from Smj
is

transmitted until successfully delivered), respectively.

C. Average Age Metric

The age ∆i(t) of the status of Si at the destination is a

linearly increasing random process when no updates arrive at

the destination and has downward jumps when an update is

received. The average age of the status updates of Si from the

perspective of the destination is defined as [2]

∆i , lim
T →∞

1

T

∫ T

0

∆i(t) dt. (1)

III. AVERAGE AGE ANALYSIS FOR STATIONARY

RANDOMIZED AND ROUND-ROBIN POLICIES

In this section we analyze the average AoI for the two

scheduling policies in Section II-A and Section II-B.

A. Stationary Randomized Schedule Policy

Theorem 1 presents the average AoI for the stationary

randomized schedule policies.

Theorem 1. The average AoI ∆i of the status updates of

source i ∈ I for the multi-source system with active sources

and service completion with error probability ǫ under the

stationary randomized policies is equal to

∆i,RND NR =
1 + (1 − ǫ)pi
µ(1− ǫ)pi

, (2a)

∆i,RND ARQ =
1+ pi

µ(1 − ǫ)pi
, (2b)

∆i,RND ASQ = ∆i,RND NR. (2c)

Proof sketch. We use tools from Stochastic Hybrid Systems

(SHS) [16] to derive the average age. Due to space limitations,

most of the algebraic derivations are omitted here. A Markov

chain representation of the discrete state q(t) ∈ Q of the

system regarding ∆i(t) for case RND NR is shown in Fig. 2.

Table II represents the exponential rate and the transition

map for each link ℓ with continuous state [x0, x1], where x0

represents the age of the Si’s state at D and x1 stores the age

to be used after an age reset when Si successfully delivers a

packet (link 0). For notational convenience, we denote

D0 =

[

1 0
0 0

]

, D1 =

[

0 0
1 0

]

, and D2 =

[

1 0
0 1

]

. (3)

Since there is only one state in Fig. 2, the stationary

distribution of the Markov chain is trivial and we can write

the single balance equation (Theorem 4, [16]) as

µv̄0 = b+ λ(0)
v̄q0A0 + λ(1)

v̄q1A1, (4)
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Fig. 2. The Markov chain of the status update system in Fig. 1 regarding
∆i(t) for case RND NR. Link ℓ = 0 corresponds to a successfully delivered
packet for Si. Link ℓ = 1 corresponds to an unsuccessfully delivered packet
for Si as well as a successful or unsuccessful packet from any other source.

TABLE II
TRANSITION RATES AND MAPS FOR CASE RND NR.

ℓ qℓ → q′
ℓ

λ(ℓ) xAℓ Aℓ vqℓAℓ

0 0 → 0 µ(1 − ǫ)pi [x1, 0]) D1 [v01, 0]
1 0 → 0 µ(1 − (1 − ǫ)pi) [x0, 0]) D0 [v00, 0]

where b = [1, 1] and v̄ = [v̄00, v̄01]. Substituting the quantities

from Table II and solving for v00 yields

v̄00 =
1 + (1 − ǫ)pi
µ(1− ǫ)pi

, (5)

which shows (2a).

We use a similar analysis for the RND ARQ and

RND ASQ cases. Both of these cases can be represented by

the Markov chain in Fig. 3. The system enters state 0 after

any successful transmission. The system enters state 1 after

an unsuccessful transmission from Si and the system enters

state 2 after an unsuccessful transmission from Sj for j 6= i.

Links 0 and 4 correspond to successful transmissions by Si.

Links 2 and 3 correspond to unsuccessful transmissions by Si.

The remaining links correspond to successful and unsuccessful

transmissions from Sj for all j 6= i.

01 2
0 1

23

4
5 6

7

Fig. 3. The Markov chain for cases RND ARQ and RND ASQ.

Table III shows the transition rates for case RND ARQ.

The table for RND ASQ is identical except for links 2 and 3

where, for RND ASQ, we have A2 = A3 = D0 and

xA2 = xA3 = [x0, 0]. For RND ASQ we also have

vq2A2 = [v00, 0] and vq3A3 = [v10, 0]. These differences

are due to the fact that, since RND ASQ always transmits a

fresh sample, links 2 and 3 reset the stored age in x1. A similar

analysis as above can be applied to solve for the steady state

distribution of the Markov chain as

π̄ = [π̄0 π̄1 π̄2] =
[

1− ǫ ǫpi ǫ(1− pi)
]

. (6)

and then solving the balance equations for v0, v1, and v2 and

then compute ∆i = v00 + v10 + v20 to arrive at (2b) and (2c).

In general, for any fixed system parameters, we have

∆i,RND ARQ ≥ ∆i,RND NR = ∆i,RND ASQ. The fact that the

achieved average age is identical between cases RND NR and

RND ASQ can be understood intuitively by noting that the

destination always receives a fresh sample with both RND NR

and RND ASQ. Moreover, the rates of successful packets

from Si are the same in both cases, i.e., for RND ASQ, the

sum of links 0 and 4 weighted by the steady state probabilities

of the Markov chain can be computed as π̄0λ
(0) + π̄1λ

(4) =

TABLE III
TRANSITION RATES AND MAPS FOR CASE RND ARQ.

ℓ qℓ → q′
ℓ

λ(ℓ) xAℓ Aℓ vqℓAℓ

0 0 → 0 µ(1−ǫ)pi [x1, 0] D1 [v01, 0]
1 0 → 0 µ(1−ǫ)(1−pi) [x0, 0] D0 [v00, 0]
2 0 → 1 µǫpi [x0, x1] D2 [v00, v01]
3 1 → 1 µǫ [x0, x1] D2 [v10, v11]
4 1 → 0 µ(1 − ǫ) [x1, 0] D1 [v11, 0]
5 0 → 2 µǫ(1− pi) [x0, 0] D0 [v00, 0]
6 2 → 2 µǫ [x0, 0] D0 [v20, 0]
7 2 → 0 µ(1 − ǫ) [x0, 0] D0 [v20, 0]

µ(1− ǫ)2pi + µǫ(1− ǫ)pi = µ(1− ǫ)pi, which is the same as

link 0 in RND RR.

B. Round-robin policy

Theorem 2 presents the average AoI for the round-robin

schedule policies.

Theorem 2. The average AoI ∆i of the status updates of

source i ∈ I for the multi-source system with active sources

and service completion with error probability ǫ under the

round-robin policies is equal to

∆i,RR NR =
N + 3 + (N − 3)ǫ

2µ(1− ǫ)
, (7a)

∆i,RR ARQ =
N + 3

2µ(1− ǫ)
, (7b)

∆i,RR ASQ =
N + 3− 2ǫ

2µ(1− ǫ)
. (7c)

Proof sketch. A Markov chain and transition rates for case

RR NR regarding ∆1(t) are shown in Fig. 4 and Table IV,

respectively. State m corresponds to Sm selected to transmit.

Links 0 and 1 correspond to successful and unsuccessful

transmissions from S1, respectively. The remaining links are

for transmissions from Sj for all j 6= 1 and do not distinguish

between successful or unsuccessful transmissions.

1 2 3 N0
1

2
N

Fig. 4. The Markov chain for case RR NR.

TABLE IV
TRANSITION RATES AND MAPS FOR CASE RR NR.

ℓ qℓ → q′
ℓ

λ(ℓ)
xAℓ Aℓ vqℓAℓ

0 1 → 2 µ(1 − ǫ) [x1, 0] D1 [v11, 0]
1 1 → 2 µǫ [x0, 0] D0 [v10, 0]
i i → i+ 1 µ [x0, 0] D0 [vi0, 0]
N N → 1 µ [x0, 0] D0 [vN0, 0]

Both RR ARQ and RR ASQ can be represented by the

Markov chain in Fig. 5. Here, the even numbered links cor-

respond to unsuccessful transmissions and the odd numbered

links correspond to successful transmissions. The transition

rates for case RR ARQ are shown in Table V. Similar to

the previous discussion, the only difference between RR ARQ

and RR ASQ is that the stored age x1 is reset in link 0 for
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RR ASQ. Hence, the transition rate table for case RR ASQ is

the same as Table V except for link 0 where, for RND ASQ,

we have A0 = D0, xA0 = [x0, 0], and vq0A0 = [v10, 0].
A similar analysis as above can be applied to solve for

v1, . . . ,vN and then compute ∆i=
∑N

i=1 vi0 to get (7a)-(7c).

1 2 N

0
1

2 2N − 2

2N − 1

Fig. 5. The Markov chain for cases RR ARQ and RR ASQ.

TABLE V
TRANSITION RATES AND MAPS FOR CASE RR ARQ, i ∈ {2, ...,N − 1}.

ℓ qℓ → q′
ℓ

λ(ℓ) xAℓ Aℓ vqℓAℓ

0 0 → 0 µǫ [x0, x1] D2 [v10, v11]
1 0 → 1 µ(1 − ǫ) [x1, 0] D1 [v11, 0]

2i− 2 i → i µǫ [x0, 0] D0 [vi0, 0]
2i− 1 i → i+ 1 µ(1 − ǫ) [x0, 0] D0 [vi0, 0]
2N − 2 N → N µǫ [x0, 0] D0 [vN0, 0]
2N − 1 N → 1 µ(1 − ǫ) [x0, 0] D0 [vN0, 0]

C. Discussion

To compare the RND and the RR policies, we can assume

p1 = . . . = pN = 1
N

. From (2a)-(2c) and (7a)-(7c) we have

∆i,RND NR −∆i,RR NR =
N − 1

2µ
≥ 0, (8a)

∆i,RND ARQ −∆i,RR ARQ =
N − 1

2µ(1− ǫ)
≥ 0, (8b)

∆i,RND ASQ −∆i,RR ASQ =
N − 1

2µ(1− ǫ)
≥ 0. (8c)

The average age gap between RND and RR policies can be

intuitively understood by considering the case when ǫ = 0.

In this case, the round-robin policy ensures each source is

regularly sampled whereas a randomized stationary policy,

even when sampled in the same overall proportion as the

round-robin schedule, samples each source irregularly. This

irregular sampling causes an increase in the average age with

respect to the round-robin schedule.

IV. OPTIMAL RANDOMIZED STATIONARY POLICY FOR

MINIMIZING WEIGHTED SUM AVERAGE AOI

In this section we find the optimal source selection prob-

abilities p∗1, . . . , p
∗
N that minimize the general weighted sum

average AoI among all stationary randomized policies. Con-

sidering Theorem 1, this problem can be formulated as

min
pi

WSAoI, s.t.

N
∑

i=1

pi = 1, (9)

where

WSAoIRND NR=WSAoIRND ASQ,

N
∑

i=1

αi[1+(1−ǫ)pi]
µN(1− ǫ)pi

, (10a)

WSAoIRND ARQ ,

N
∑

i=1

αi[1 + pi]

µN(1− ǫ)pi
, (10b)

and αi ≥ 0 denotes the fixed wight for source i. Without loss

of generality we assume
∑N

i=1

√
αi = 1. Theorem 3 represents

the optimal solution for the problem in (9).

Theorem 3. For the RND policies, the optimal pi is

p∗i,RND NR = p∗i,RND ARQ = p∗i,RND ASQ =
√
αi. (11)

Proof: Considering (10a)-(10b), the Hessian matrix of

WSAoI can be written as

H(WSAoI) = diag

(

2α1

µN(1−ǫ)p31
, ...,

2αN

µN(1−ǫ)p3N

)

. (12)

Since αi > 0 we have |H(WSAoI)| > 0, which means that

WSAoI is a convex function of p1, . . . , pN and there exist a

set of optimal pi values that minimize WSAoI. From (10a) we

define the following Lagrangian multiplier function

L(pi, λ) =
1

N

N
∑

i=1

αi[1 + pi(1− ǫ)]

µpi(1 − ǫ)
+ λ(

N
∑

i=1

pi − 1). (13)

Taking the partial derivative of (13), we get

∂L(pi, λ)
∂pi

= − αi

Nµ(1− ǫ)p2i
+ λ, (14a)

∂L(pi, λ)
∂λ

=

N
∑

i=1

pi − 1. (14b)

Setting (14a) and (14b) to zero, we get

p∗i,RND NR = p∗i,RND ASQ =
√
αi, λ =

1

Nµ(1− ǫ)
. (15)

Repeating steps (13)-(14b) for (10b) gives p∗i,RND ARQ.

V. NUMERICAL RESULTS

This section presents numerical examples to illustrate and

verify the achieved average AoI. Figure 6 represents the

average age pairs (∆1,∆2) for N=2 sources, error probability

ǫ={0.15, 0.6} and normalized service rate µ=1. The results

show that ∆1+∆2 is minimized under the round-robin policy

with retransmissions of fresh samples.

Figure 7 represents WSAoI versus p1 for α1=0.49, α2=
0.09, N =2, ǫ=0.6 and µ=1. Since the information from

source S1 has a higher weight, intuitively over the long term

more packets from S1 should be delivered to the destination

to minimize WSAoI. The simulation results show that the

minimum WSAoI is reached when p∗1,RND NR=p∗1,RND ARQ=
p∗1,RND ASQ=0.7, which agrees with Theorem 3. For the two

extreme cases where p1→0 (p2→1) and p1→1 (p2→0) we have

∆1→∞ (∆2 becomes finite) and ∆1 becomes finite (∆2→∞),

respectively, giving WSAoI→∞.

VI. CONCLUSION

This paper analyzed the average AoI for a multi-source

status update system with packet delivery errors. For two

scheduling policies, we derived simple closed-form expres-

sions for the average AoI under three different packet man-

agement approaches whenever errors occur. The round-robin

policy with retransmission of fresh samples was shown to have

the lowest average AoI among the considered cases. The gap
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Fig. 6. Average age pairs (∆1,∆2) for N=2, ǫ={0.15, 0.6} and µ=1.
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Fig. 7. Weighted sum average age versus p1 for N = 2, ǫ = 0.6 and µ = 1.

between the randomized stationary and round-robin policies

was also shown to scale with O(N). For a general problem

where the sources have different priorities, the source selec-

tion probabilities were optimized to minimize the weighted

sum average AoI for stationary randomized policies. Future

directions of this work include deriving fundamental bounds

on the AoI of stationary randomized policy and developing an

optimal scheduling policy that minimizes the age.
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